Improving Faraday rotation performance with block copolymer and FePt nanoparticle magneto-optical composite

نویسندگان

  • ALEXANDER MILES
  • YUE GAI
  • PALASH GANGOPADHYAY
  • XINYU WANG
  • ROBERT A. NORWOOD
  • JAMES J. WATKINS
چکیده

Magneto-optical (MO) composites with excellent Faraday rotation (FR) response were fabricated using iron platinum (FePt) nanoparticles (NPs) and polystyrene-block-poly (2-vinyl pyridine) (PS-b-P2VP) block copolymers (BCPs). Gallic acid functionalized FePt NPs with average core diameters (dcore) of 1.9, 4.9, 5.7 and 9.3 nm have been selectively incorporated into a P2VP domain through hydrogen bonding interactions. The use of copolymer templates to selectively arrange the magnetic NPs guaranteed high MO performance with little trade-off in terms of scattering loss, providing a simple strategy to prepare functional materials for MO applications. As a result, Verdet constants of a 10 wt % loaded 4.9 nm FePt NP composite reached absolute magnitudes as high as ~-6 × 10 °/T-m at 845 nm, as determined by FR measurements at room temperature. At the same time, the MO figure-of-merit was as large as −25 °/T in these composites, indicating both excellent MO performance and transparency. The dependence of the nanocomposite FR properties on particle diameter, loading (from 0.1 wt % to 10 wt %) and composite nanostructure were systematically investigated at four infrared wavelengths (845, 980, 1310 and 1550 nm). © 2017 Optical Society of America OCIS codes: (230.2240) Faraday effect; (160.3820) Magneto-optical materials; (160.4890) Organic materials. References and links 1. R. Bahuguna, M. Mina, J. W. Tioh, and R. J. Weber, “Magneto-Optic-based fiber switch for optical communications,” IEEE Trans. Magn. 42(10), 3099–3101 (2006). 2. L. D. Barron, Molecular Light Scattering and Optical Activity, 2nd ed. (Cambridge University Press, 2004), pp 264–272. 3. A. K. Zvezdin and V. A. Kotov, Studies in Condensed Matter Physics. Modern Magnetooptics and Magnetooptical Materials, (CRC Press, 1997), pp33–58. 4. P. Zu, C. C. Chan, G. W. Koh, W. S. Lew, Y. Jin, H. F. Liew, W. C. Wong, and X. Dong, “Enhancement of the sensitivity of magneto-optical fiber sensor by magnifying the birefringence of magnetic fluid film with loytsagnac interferometer,” Sens. Actuators B Chem. 191, 19–23 (2014). 5. M. Zayat, F. Del Monte, M. Del Puerto Morales, G. Rosa, H. Guerrero, C. J. Serna, and D. Levy, “Highly transparent γ-Fe2O3/Vycor-glass magnetic nanocomposites exhibiting Faraday rotation,” Adv. Mater. 15(21), 1809–1812 (2003). 6. S. Taccola, F. Greco, A. Zucca, C. Innocenti, C. de Julián Fernández, G. Campo, C. Sangregorio, B. Mazzolai, and V. Mattoli, “Characterization of free-standing PEDOT:PSS/iron oxide nanoparticle composite thin films and application as conformable humidity sensors,” ACS Appl. Mater. Interfaces 5(13), 6324–6332 (2013). 7. S. J. Chua and B. Li, Optical Switches: Materials and Design (Woodhead Publishing, 2010), pp 97–135. 8. B. J. H. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: a review,” IEEE Photonics J. 6, 0600215 (2015). 9. R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazão, “Optical current sensors for high power systems: a review,” Appl. Sci. 2(4), 602–628 (2012). 10. Z. Liu, H. Ukida, P. Ramuhalli, and K. Niel, Intergrated Imaging and Vision Techniques for Industrial Inspection (Springer-Verlag London 2015), pp 483–536. 11. J. M. Caicedo, O. Pascu, M. López-García, V. Canalejas, A. Blanco, C. López, J. Fontcuberta, A. Roig, and G. Herranz, “Magnetophotonic response of three-dimensional opals,” ACS Nano 5(4), 2957–2963 (2011). 12. J. C. Suits, “Faraday and Kerr effects in magnetic compounds,” IEEE Trans. Magn. 8(1), 95–105 (1972). Vol. 7, No. 6 | 1 Jun 2017 | OPTICAL MATERIALS EXPRESS 2126 #290538 https://doi.org/10.1364/OME.7.002126 Journal © 2017 Received 4 Apr 2017; revised 17 May 2017; accepted 18 May 2017; published 31 May 2017 13. R. F. Ziolo, E. P. Giannelis, B. A. Weinstein, M. P. O’horo, B. N. Ganguly, V. Mehrotra, M. W. Russell, and D. R. Huffman, “Matrix-mediated synthesis of nanocrystalline ggr-Fe2O3: a new optically transparent magnetic material,” Science 257(5067), 219–223 (1992). 14. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011). 15. V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4, 1– 7 (2013). 16. I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in singleand multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011). 17. R. Lewicki, J. H. Doty 3rd, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(31), 12587–12592 (2009). 18. M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22-23), 2681–2688 (2011). 19. R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum Faraday and Kerr rotations in graphene,” Nat. Commun. 4, 1841 (2013). 20. P. Siddons, N. C. Bell, Y. Cai, C. S. Adams, and I. G. A. Hughes, “Gigahertz-bandwidth atomic probe based on the slow-light Faraday effect,” Nat. Photonics 3(4), 225–229 (2009). 21. P. Tartaj, T. González-Carreño, and C. J. Serna, “Single-step nanoengineering of silica coated maghemite hollow spheres with tunable magnetic properties,” Adv. Mater. 13(21), 1620–1624 (2001). 22. L. L. Beecroft and C. K. Ober, “Nanocomposite materials for optical applications,” Chem. Mater. 9(6), 1302– 1317 (1997). 23. T. Yogo, T. Nakamura, W. Sakamoto, and S. Hirano, “Synthesis of transparent magnetic particle/organic hybrid film using iron-organics,” J. Mater. Res. 15(10), 2114–2120 (2000). 24. P. Hansen, C. Clausen, G. Much, M. Rosenkranz, and K. Witter, “Magnetic and Magneto-optical properties of rare-earth transition-metal alloys containing Gd, Tb, Fe, Co,” J. Appl. Phys. 66(2), 756–767 (1989). 25. A. B. Villaverde, D. A. Donatti, and D. G. Bozinis, “Terbium gallium garnet Verdet constant measurements with pulsed magnetic field,” J. Phys. C Solid State Phys. 11(12), L495–L498 (2001). 26. S. Y. Sung, X. Qi, and B. J. H. Stadler, “Integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability,” Appl. Phys. Lett. 87(12), 1–3 (2005). 27. R. V. Mikhaylovskiy, E. Hendry, and V. V. Kruglyak, “Ultrafast Inverse Faraday Effect in a Paramagnetic Terbium Gallium Garnet Crystal,” Phys. Rev. B 86(10), 100405 (2012). 28. H. Majeed, A. Shaheen, and M. S. Anwar, “Complete stokes polarimetry of magneto-optical faraday effect in a terbium gallium garnet crystal at cryogenic temperatures,” Opt. Express 21(21), 25148–25158 (2013). 29. D. E. Lacklison, G. B. Scott, H. I. Ralph, and J. L. Page, “Garnets with high magnetooptic figures of merit in the visible region,” IEEE Trans. Magn. 9(3), 457–460 (1973). 30. G. Scott, D. Lacklison, H. Ralph, and J. Page, “Magnetic circular dichroism and Faraday rotation spectra of Y3Fe5O12,” Phys. Rev. B 12(7), 2562–2571 (1975). 31. V. Doormann, J. P. Krumme, and H. Lenz, “Optical and magneto-optical tensor spectra of bismuth-substituted yttrium-iron-garnet films,” J. Appl. Phys. 68(7), 3544–3553 (1990). 32. M. Laulajainen, P. Paturi, J. Raittila, H. Huhtinen, A. B. Abrahamsen, N. H. Andersen, and R. Laiho, “BixY3xFe5O12 Thin films prepared by laser ablation for magneto-optical imaging of superconducting thin films,” J. Magn. Magn. Mater. 279(2-3), 218–223 (2004). 33. M. Veis, E. Lišková, R. Antoš, Š. Višňovský, N. Kumar, D. S. Misra, N. Venkataramani, S. Prasad, and R. Krishnan, “Polar and longitudinal magneto-optical spectroscopy of bismuth substituted yttrium iron garnet films grown by pulsed laser deposition,” Thin Solid Films 519(22), 8041–8046 (2011). 34. A. Lopez-Santiago, H. R. Grant, P. Gangopadhyay, R. Voorakaranam, R. A. Norwood, and N. Peyghambarian, “Cobalt ferrite nanoparticles polymer composites based all-optical magnetometer,” Opt. Mater. Express 2(7), 978 (2012). 35. K. Hayashi, R. Fujikawa, W. Sakamoto, M. Inoue, and T. Yogo, “Synthesis of Highly Transparent Lithium Ferrite Nanoparticle/polymer Hybrid Self-Standing Films Exhibiting Faraday Rotation in the Visible Region,” J. Phys. Chem. C 112(37), 14255–14261 (2008). 36. E. M. Moreno, M. Zayat, M. P. Morales, C. J. Serna, A. Roig, and D. Levy, “Preparation of Narrow Size Distribution Superparamagnetic,” Langmuir 18(12), 4972–4978 (2002). 37. M. Domínguez, D. Ortega, J. S. Garitaonandía, R. Litrán, C. Barrera-Solano, E. Blanco, and M. Ramírez-delSolar, “Magneto-optic Faraday effect in maghemite nanoparticles/silica matrix nanocomposites prepared by the sol-gel method,” J. Magn. Magn. Mater. 320(20), e725–e729 (2008). 38. V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011). 39. M. Moocarme, J. L. Domínguez-Juárez, and L. T. Vuong, “Ultralow-intensity magneto-optical and mechanical effects in metal nanocolloids,” Nano Lett. 14(3), 1178–1183 (2014). Vol. 7, No. 6 | 1 Jun 2017 | OPTICAL MATERIALS EXPRESS 2127

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

خواص نوری- مغناطیسی و ضرایب اپتیکی لایه‌های نازک منگنز-کبالت

Having precise hysterics loop of thin ferroelectric and ferromagnetic layers for optical switching and optical storages are important. A hysterieses loop can be achieved from a phenomenon call the magneto-optic effect. The magneto-optic effect is the rotation of a linear polarized electromagnetic wave propagated through a ferromagnetic medium. When light is transmitted through a layer of magnet...

متن کامل

Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals.

We report enhanced optical Faraday rotation in gold-coated maghemite (gamma-Fe(2)O(3)) nanoparticles. The Faraday rotation spectrum measured from 480-690 nm shows a peak at about 530 nm, not present in either uncoated maghemite nanoparticles or solid gold nanoparticles. This peak corresponds to an intrinsic electronic transition in the maghemite nanoparticles and is consistent with a near-field...

متن کامل

Enhanced magneto-optical effects in composite coaxial nanowires embedded with Ag nanoparticles

Nanostructures decorated with noble metal nanoparticles (NPs) exhibit potential for use in highly sensitive optoelectronic devices through the localized surface plasmon resonance (LSPR) effect. In this study, Faraday rotation was significantly enhanced through the structural optimization of ferromagnetic (FM)/semiconductor composite nanostructures. Experimental and theoretical results revealed ...

متن کامل

Magneto-Optical Properties of Pr, Ni- and Ce, Ni-Substituted YIG Epitaxial Films Prepared by Sputtering

Films of Y,R,(Fe, Ni),O,, @=PI, Ce) have been epitaxially grown in situ on G&G%O,, ( 1 1 1 ) substrates by rf sputtering. Faraday rotation of Ce, Ni:YIG film decreased with valence change of Ce ions from 3+ to 4+ induced by Ni substitution. On the other hand, PI, Ni:YIG films showed negative Faraday rotation in the visible which slightly increases in negative sign for Ni substitution. Magneto-o...

متن کامل

Magnetic Field Sensors And Visualizers Using Magnetic Photonic Crystals

Magneto-optical imaging is widely used to observe the domain patterns in magnetic materials, visualize defects in ferromagnetic objects, and measure the spatial distribution of stray magnetic fields. Optimized 1D magneto-photonic crystals enable a significant increase in the sensitivity of magneto-optical sensors. The properties of such devices based on the optimized reflection (doubled Faraday...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017